If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-292x+1390=0
a = 12; b = -292; c = +1390;
Δ = b2-4ac
Δ = -2922-4·12·1390
Δ = 18544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18544}=\sqrt{16*1159}=\sqrt{16}*\sqrt{1159}=4\sqrt{1159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-292)-4\sqrt{1159}}{2*12}=\frac{292-4\sqrt{1159}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-292)+4\sqrt{1159}}{2*12}=\frac{292+4\sqrt{1159}}{24} $
| 3-2(3x+4)=5x-6 | | x^2+45x+4050=0 | | 5x-10=3x+12=180 | | -10x^2+2x-1=0 | | 3x-4+8+x=2x+3-5 | | .02*x=1320 | | -12x^2-260x+1000=0 | | 7.9x+19.7=2.4x+6.5 | | 8.7x+24.3=4.2x+1.8 | | 3(a+22)-12=12a | | -7x+0=9 | | 6x-46=5x-24 | | 6y2-5y+2=0 | | 2x4+4x=15 | | 2f^2-17f+8=0 | | 2m^+9m-5=0 | | 2m^-5m-18=0 | | 30+p=25+ | | 2/x+1/3=1/5 | | 5p+10=4p-17 | | K^2+11k+18=7 | | 2x.23=7x-2 | | p/6=8=9 | | 1+4e=5e+3 | | -2(3r+)=-5r-8-r | | 5e=e+4 | | 2/3*x+1.5=0 | | e+3=2e | | 20x-29900=0 | | (2x-3)/4=-3(2x+4) | | (5v-1)(6+v)=0 | | (x-9)(2x+25)=0 |